
Tool Materials/Selection Guide

Insert Grade Map	C02
Application area	C03
Recommended Cutting Conditions	C04
ISO Insert Code	C06
BIDEMICS	C10
Ceramics / NTK CeramiX	C14
CBN	C30
PCD / Diamond Coating	C38
Carbides	C42
Chipbreakers	C54

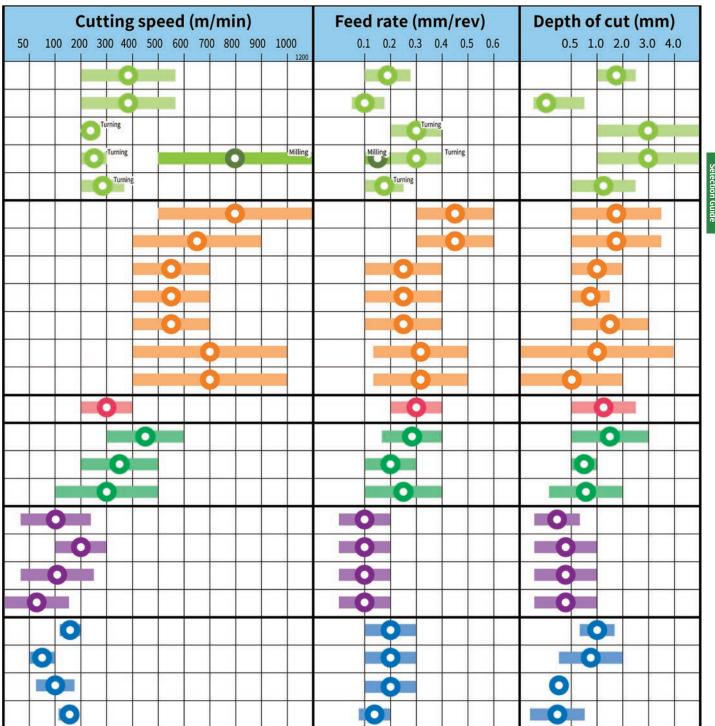
Application Range of NTK Insert Grades

Insert grade recommendation by work material type

Recommended Cutting Conditions

BIDEMICS, Ceramics, CBN, NTK CeramiX

•First Choice OSecond Choice

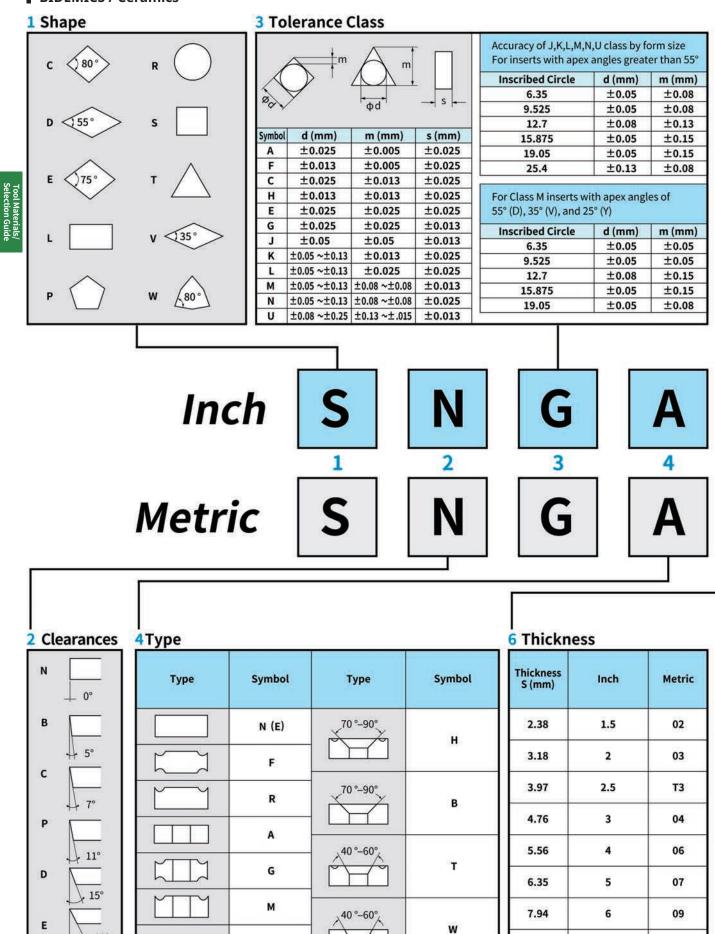

		-	and Create	Application	\bigcirc	Coo	lant
	Work material		ool Grade	Roughing Semi-finishing Finishing	Continuous Light interruption Interruption	Dry	Wet
	Heat- resistant	AICS	JX1/JX3		•		•
	alloy	BIDEMICS	JP2/120	•	•		•
			SX5	•	0		(Turning)
-		Ceramic	SX3/SX7/SX9	•	0	(Milling)	(Turning)
Tool Materials/	 Based on Using 12.7mm IC Insert except JP2 	Ŭ	WA1/WA5	•	•	0	•
erials/	Gray cast iron		SX6		0	•	•
	(Ti)		SP9	•	0	۲	0
		Ceramic	HC1/HW2	•••	•	•	
	Service State	0	HC2 / HC6	•••	•	•	•
	A STA		WA1		•	•	•
		CBN	B23 /B30	•	•	•	•
	es and and a	D N	B16	•	0	0	•
	Chilled Liners	Ceramic	HW2		0	٠	
	Ductile cast iron	mic	SP9	•	0	0	•
		Ceramic	HC6	0	0	0	•
		CBN	B52	•	•	0	•
	Hardened material	Ceramic	450/HC4/ZC7	0	0	٠	•
			B5K / B52	0	0	0	•
	0	C B N	B6K / B36	0	0	•	•
			B40	0	•	•	0
	Rolls Steel, Cast iron Ductile iron	Ceramic	HC5/HC7	•	0	۲	
	Carbida	Ceramic	WA1	•	0	•	
	Carbide	CBN	B30	•	0	٠	
	Based on Using 12.7mm IC Insert CPM	Ceramic	HC5/ZC4/HC7	•	0	•	

Carbide

•First Choice OSecond Choice

Work material			a al Creada	Applic	ation	\bigcirc	(52	Coo	lant
WORK	naterial		Tool Grade		Semi-finishing	Continuous	Light interruption	Interruption	Dry	Wet
400 series Stainless	Hardness (HB) 160-350	Carbide	QM3/DM4/DT4/ST4	٠	•		0			٠
300 series Stainless	Hardness (HB) 200-350	Carbide	QM3/DM4/DT4/ST4	•	•		0			٠
Precipitation Hardness (17-4PH etc)	Hardness (HB) 175-350	Carbide	QM3/DM4/DT4	٠	•		0			٠
Carbon Steels Alloy Steels	Hardness (HB) 130-300	Carbide	QM3/DM4/DT4	٠			0			٠
	300-400	Carbide	QM3/DM4/DT4	•	•		0			۲
Tool Steels	Hardness (HRC) -45 Turning	Carbide	QM3/DM4/DT4	•	•	ſ				٠

Tool Materials/ Selection Guide



Cutting speed (m/min)	Feed rate (mm/rev)	Depth of cut (mm)
30 60 90 120 150 180 210 240 270 300 330 360	0.05 0.1 0.15 0.2 0.25 0.3 0.35	0.5 1.0 2.0 3.0 4.0
		•

C Tool Materials/ Selection Guide

ISO insert code

BIDEMICS / Ceramics

20°

Special design

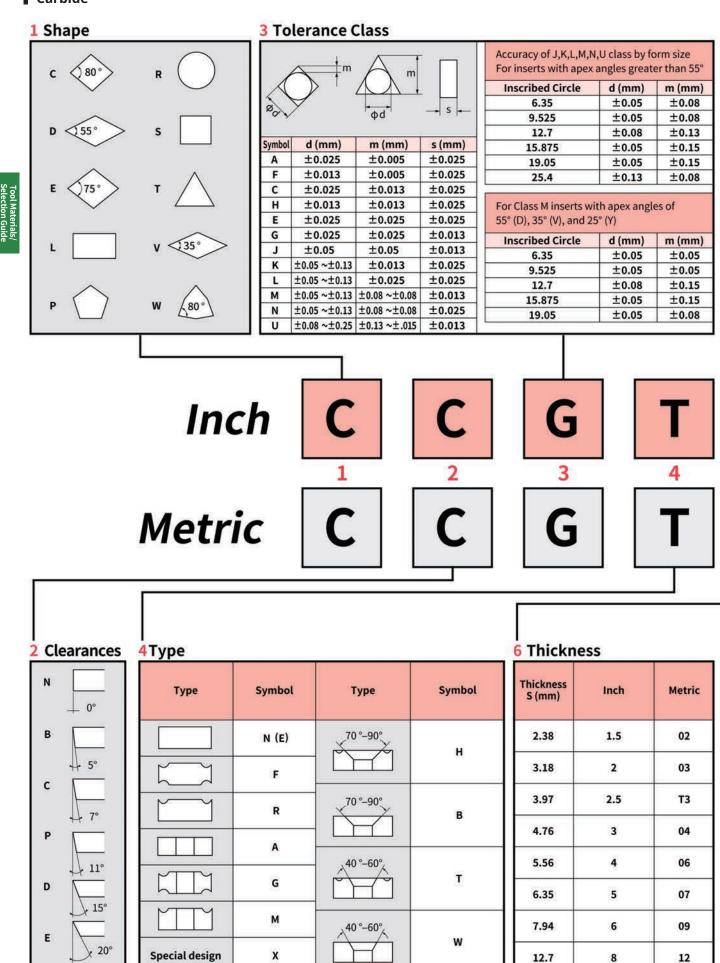
X

12.7

8

12

5 Symbol for Insert Size


7 Corner Radius

5 Symi	001101								•••••	Radius		
In	ch			Metric					Corne	r Radius	Inch	Metric
Inscribed Circle		C L		R S	T	V	W			0.4	1	04
5.56	2	06	07	06	11	11	04			0.8	2	08
7.94	3	09	11	09	16	16	06			1.2	3	12
12.1	4	12	15	12	22	22	08		R	1.6	4	16
15.875	5	16	19	15	27	27	10		R	2.0	5	20
19.05	6	19	23	19	33	33	13			2.4	6	24
25.4	8	25	31	25	44	44	17	1		3.2	8	32
4	ŀ		3	3	B		Т			04	2	20
5 1 8 Edge Sha	2 Condit	tion F	6) 4) 9 Neg	ative Land	2		8			9)10 10 Negative	2	10 20 gle
1 :	2 Condition		94	ative Land	2 Width	}	T	r)10 Negative	2	20
1 8 Edge Sha	2 Conditionarp	F	94	ative Land	2 Width	c (m	T	r (metri 0.03 0.03)10	E Land An	20
L 8 Edge Sha Hon	2 Conditionarp	F E T	9 Neg	ative Land r <u>Descr</u> <u>inch</u> 01 02 02 03	2 Width a iption metric 002 004 005 008	c (mo	a etric) 	(metrie 0.03 0.05 – –)10 Negative <i>b</i> Description 10 15	2 e Land An	20
1	2 Conditions	F E T Z	9 Neg	ative Land r	2 Width a iption metric 002 004 005 008 010	c (mo 0 0 0 0	a etric) 	(metrie 0.03 0.05 – – –		10 Negative b Description 10 15 20	2 e Land An	20
1 B Edge Sha Hon Chamf	2 e Condit arp aed fered	F E T Z S	9 Neg	ative Land r	2 Width a iption metric 002 004 005 008 010 012 015	c (me 0 0 0 0 0 0 0 0	a etric) - - 05 08 10 13 15	(metrie 0.03 0.05 – –		10 Negative	2 e Land An	20
1 Edge Sha Hon Chamfe	2 e Condit arp aed fered	F E T Z	9 Neg	J 1 1 1 1 1 1 1 1	2 Width a iption metric 002 004 005 008 010 012 015 020	c (me 0 0 0 0 0 0 0 0 0 0	a etric) - - 005 008 10 13 115 2	(metrin 0.03 		10 Negative b Description 10 15 20	2 e Land An	20
1 Edge Sha Hon Chamfe and Ho	2 e Condit arp aed fered fered	F E T Z S U	9 Neg	Image: static line r Image: static line Image: static lin Image: static lin </td <td>2 Width a iption metric 002 004 005 008 010 015 020 010</td> <td>c (me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>a etric) - - 05 .08 .10 .13 .15 .2 .10</td> <td>(metrin 0.03 - - - - - 0.03 0.03</td> <td></td> <td>10 Negative</td> <td>2 e Land An</td> <td>20</td>	2 Width a iption metric 002 004 005 008 010 015 020 010	c (me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a etric) - - 05 .08 .10 .13 .15 .2 .10	(metrin 0.03 - - - - - 0.03 0.03		10 Negative	2 e Land An	20
1 Edge Sha Hon Chamfand Hor Doub	2 e Condit arp hed fered fered fered ble	F E T Z S	9 Neg	Image: static line r Image: static line 01 02 03 04 05 06 08 04 08 04	2 Width a iption metric 002 004 005 008 010 010 010 010 020 010	c (mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a etric) - - 0.05 0.08 1.10 1.3 1.15 .2 .10 .2 .10	(metrin 0.03 		10 Negative	2 e Land An	20
1 Edge Sha Hon Chamfe and Ho	2 e Condit arp hed fered fered fered ble	F E T Z S U	9 Neg	ative Land r b c c c c c c c c	2 Width a iption metric 002 004 005 008 010 010 010 010 020 010 020 010	c (mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a etric) 	(metric 0.03 0.05 0.03 0.03 0.03 0.05 0.05 0.08		10 Negative	2 e Land An	20
1 8 Edge Sha Hon Chamfe and Ho Chamfe and Ho	2 Condit arp aed fered fered ble fered	F E T Z S U	9 Neg	ative Land r b c c c c c c c c	2 Width a iption metric 002 004 005 008 010 012 015 020 010 010 020 010 020 010 020 010	c (mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a etric) - - 05 08 10 13 15 2 2 10 2 2 10 2 2 4	(metrii 0.03 0.05 - - - 0.03 0.03 0.05 0.05 0.08		10 Negative	2 e Land An	20
1 8 Edge Sha Hon Chamfr and Ho Chamfr Chamfr and Ho Chamfr	2 Conditional and a second se	F E T Z S U K	9 Neg	ative Land r b c c c c c c c c	2 Width a iption metric 002 004 005 008 010 012 015 020 010 010 020 010 020 010 020 010 020 010 020 010 020 010 020 010 020 010 020 010 01		a etric) - - 05 08 10 13 15 2 2 10 2 2 10 2 2 4	(metric 0.03 0.05 0.03 0.03 0.03 0.05 0.05 0.08		10 Negative	2 e Land An	20
1 8 Edge Sha Hon Chamfr and Ho Chamfr	2 Conditional and a second se	F E T Z S U K	9 Neg	ative Land r b c c c c c c c c	2 Width a iption metric 002 004 005 008 010 012 015 020 010 010 010 020 010 010 020 040 070		a etric) - - 05 08 10 13 15 2 10 2 2 10 2 2 4 4 7 7 5 5 8	(metrii 0.03 0.05 - - - - 0.03 0.03 0.05 0.05 0.05 0.08 -		10 Negative	2 e Land An	20

240 95 Note: K, J, P & Q show its primary land width **C** Tool Materials/ Selection Guide

ISO insert code

Carbide

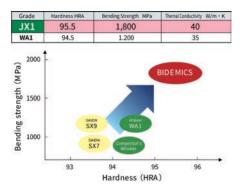
5Cutting Edge Length **7**Nose Radius Metric **Corner Radius** Inch Metric Inch $\overline{\mathbb{A}}$ R c, ′D / S V 0.03 01 00 Inscribed Circle 0.08 04M 01M 5.56 2 06 07 06 11 11 04 0.1 04 01 7.94 3 09 11 09 16 16 06 0.18 08M 02M 12.7 4 15 12 22 22 08 12 0.2 08 02 R 15.875 5 16 19 15 27 27 10 0.38 04M 1M 19.05 6 19 23 19 33 33 13 0.4 1 04 25.4 8 25 31 25 44 17 44 2 0.8 08 AM3 08 B .5 8 9 6 5 7 10 5 13 ΑΙ ſ Γ **10** Type of Chipbreaker 8 Edge Sharpness 9 Hand of Chipbreaker F Up-sharp edge (without any edge preparation) Ν Neutral* (Blank) Non up-sharp edge R **Right-hand 11** Wiper insert Left-hand L "-WP" after chipbreaker

* Omitted when edge is not "up-sharp"

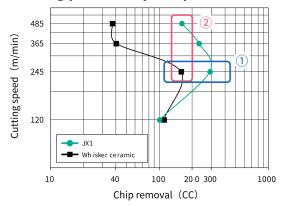
C Tool Materials/ Selection Guide

BIDEMICS

Heat-resistant alloys, which are mainly used in the aircraft industry, have low thermal conductivity, high temperature strength, high work hardening, and high adhesion to tool materials, making them extremely difficult to cut, and improving production efficiency has been a key issue.


BIDEMICS is a new category of material that combines various materials to achieve high strength and high hardness. It enables highly efficient machining that exceeds the performance of conventional carbide and ceramics.

V


Insert grade, applications, and features

Work material	Grade	Application
	JX1	Semi-finishing/rough machining of heat-resistant alloys (non scale) Cutting speed up to Vc=500m/min. Longer life and better machined surface compared to ceramic grades
S	JX3	Semi-finishing/rough machining of heat-resistant alloys (non scale) Cutting speed up to Vc=480m/min. Longer life and better machined surface compared to ceramic grades
Heat resistant alloy	120	Finish machining of heat-resistant alloys Cutting speed up to Vc=500m/min. Longer life and better machined surface compared to carbide tools
	JP2	Finish machining of heat-resistant alloys Cutting speed up to Vc=480m/min. Longer life and better machined surface compared to carbide tools

Physical properties

Machining productivity comparison between JX1 and Whisker Ceramics

1Longer tool life

JX1/JX3's combination of High Hardness,Superior Thermal Conductivity and Improved Strength compared to Whisker ceramics results in significantly longer tool life when applied at typical Whisker ceramic speeds, feeds, and depth of cut.

2Higher Speeds, More Productivity

JX1/JX3's superior physical properties compared to Whisker ceramic enable you to increase speeds; potentially as much as 2X Whisker ceramic speeds; increasing productivity and potentially offsetting the need for additional equipment to meet increasing demands.

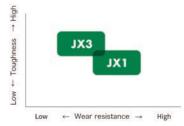
Chips break easily at higher cutting speeds vs the typically continuous chips of HRSA materials. The result is more efficient chip removal.

Recommended Cutting Conditions

Grade	Work material	Application	Process	Cutting speed (m/min)	Feed (mm/rev)	Depth of cut (mm)	Coolant
JX1	heat-resistant alloys	turning	roughing	180- 480	0.15-0.30	1.0-2.5	WET
JX3	field-resistant alloys	turning	roughing	180- 480	0.10-0.25	0.5-2.0	WET
120	boat registant allows	turning	finishing	180- 500	0.05-0.20	0.1-0.7	WET
JP2	heat-resistant alloys	turning	finishing	180- 520	0.10-0.25	0.25-1.0	WET

Heat-resistant alloys for rough to semi-finishing | BIDEMICS

JX1 / JX3


Ultra-high speed machining of heat-resistant alloys at Vc = 480 m/min Longer life & higher quality machined surface compared to whisker ceramics Applicable to new materials for aircraft parts

Performance

Significantly longer life than whisker ceramics

Twice" the cutting speed is possible. Good machined surfaces are achieved.

Suitable for machining heat-resistant alloys made of powder alloys

Application

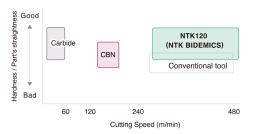
Heat-resistant alloys Turning / Grooving / Profiling Rough to semi-finishing with non-scale

Case study Turbine disk

Work material	Inconel 718		
Cutting speed	Competitor: 200 m/min NTK: 350 m/min	JX3	82 cc/min
Feed	0.15 mm/rev	373	02 00/1111
		Competitor's Whisker ceramics	48 cc/min
Depth of cut	1.5 mm	1	
Coolant	WET		

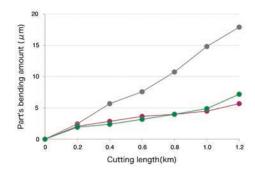
Tool Mater Selection G

Heat-resistant alloys for finishing | BIDEMICS


JP2 / 120

For high-speed finishing

Ultra-high-speed finishing of heat-resistant alloy machining. 15 times faster than carbide and 3 times faster than CBN.


Performance

Improves the wear-resistant performance of BIDEMICS and good for part's straightness performance of workpiece in finishing operations. Finish machining of heat-resistant alloys at a cutting speed of 500 m/min is achieved.

Part's Straightness Performance

[cutting conditions] material: Inconel 718 vc=320m/min (carbide vc=50m/min) f=0.2mm/rev ap=0.1mm WET

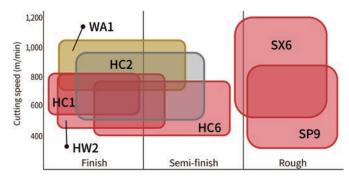
Application

Heat resistant alloys Finishing

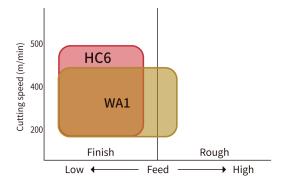
Case study Turbine disk (finishing)

Work material	Inconel 718			
Cutting speed	Competitor: 20 m/min NTK: 240 m/min	a T-	JP2	525 cc/min
Feed	0.08 mm/rev		Competitor's Whisker ceramics	45 cc/min
Depth of cut	0.25 mm	-		
Coolant	WET	~		

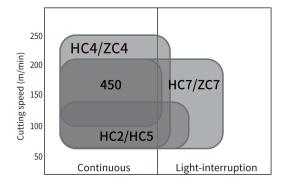
Ceramics / NTK CeramiX

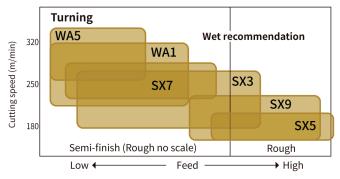

Insert grade, applications, and features

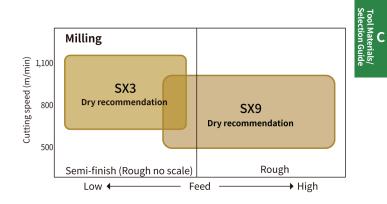
Tool Materials/ Selection Guide **C** NTK ceramic inserts provide highly efficient machining with excellent high-temperature hardness, heat resistance, and chemical stability.


NTK offers various types and geometries of silicon nitride, alumina, and whisker ceramic inserts to meet the needs of each application and support highly efficient machining and high-speed cutting.

Work material	Grade	Structure	Color	Application	Hardness HRA	Toughness Mpa	Thermal conductivity W/m.K
	HC1	Al ₂ O ₃	White	Semi-finishing of gray cast iron Pipe bead cutting	94	700	17
	HW2	AI_2O_3	Pink	Semi-finishing of gray cast iron / liners Reinforced toughness	94	750	19
K	HC6	TiC+Al ₂ O ₃	Black	Semi-finishing of ductile cast iron Semi-finishing of gray cast iron with coolant	94	800	29
Cast iron	SX6	Si ₃ N ₄	Gray	Turning/milling of gray cast iron Reinforced VB wear resistance	93.5	1,200	29
	SP9	SiAION	Yellow	Turning of heat-resistant alloy Roughing of gray cast iron High-precision machining by low-resistance edge treatment + CVD coating	93.5	1,200	15
	450	TiAIN coating	Black	Continuous finishing of hardened material (HRC 55-65)	95.5	1200	31
	HC2/HC5	Al ₂ O ₃ +TiC	Black	Semi-finishing of hardened materials and gray cast iron	94.5	800	21
Hardened material	HC4/ZC4	Al ₂ O ₃ +TiC	Black / Gold	Finishing of hardened materials (e.g. removal of carburized layers)	95.5	1,000	25
Indicental	HC7/ZC7	Al ₂ O ₃ +TiC	Black / Gold	Finishing of hardened materials (e.g. removal of carburized layers)	95	1,100	23
	SX3	SiAION	Gray	Roughing with scale to Semi-finishing of heat-resistant alloys Excellent balance between wear and chipping resistance	93	1,100	12
	SX5	SiAlon	Gray	Rough turning of heat-resistant alloy (Waspaloy)	92.5	1100	18
	SX7	SiAION	Gray	Turning/Milling of Heat-Resistant Alloys Good wear resistance	93	900	11
Heat resistant alloy	SX9	SiAION	Gray	Rough turning/milling of heat-resistant alloys and gray cast iron Excellent chipping resistance	93.5	1,200	15
	WA1	Al ₂ O ₃ +SiC	Light green	Turning of heat-resistant alloys/gray cast iron Excellent chipping resistance	94.5	1,200	35
	WA5	Al ₂ O ₃ +SiC	Light green	Turning heat-resistant alloys/gray cast iron Excellent wear resistance	94.5	1,200	35


For gray cast iron

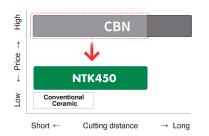

For ductile cast iron



For hardened materials

For heat-resistant alloys

For continuous machining of hardened materials | NTK CeramiX

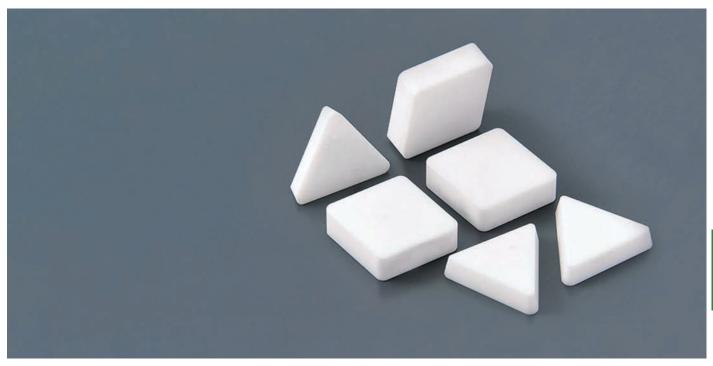

NTK450

NTK CeramiX, a new material that maximizes the performance of ceramics, is born

Establishing an intermediate position between CBN and ceramics Higher economic efficiency enables insert cost reduction

Performance

- Higher wear resistance performance with newly developed coating and dense, homogenized base material structure
- Ideal for small-lot production or single-part production when balancing tooling cost and performance
- Insert cost and cutting distance


Application

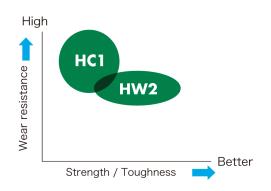
Hardened materials Continuous machining HRC55-65

Case study Industrial robot parts machining

NTK CeramiX "450" achieves twice the machining capability of competitor CBN. In addition, annual tooling costs have been reduced by approximately 70%.

Work material	SCM415 (HRC 58-62)			
Cutting speed	200 m/min		450 TNGA160404	30 pcs / corner
Feed	0.05 mm/rev			
Depth of cut	0.1mm	Machining dia. : φ60	Competitor's coated CBN	15 pcs / corner
Coolant	WET			

Gray cast iron continuous finishing | Alumina ceramics


HC1

First recommended grade for finishing ordinary gray cast iron

High-speed machining at Vc = ~700 m/min

Performance

- Dedicated grade for high-speed finishing
- Excellent wear resistance performance
- Highly heat resistant due to high-purity alumina components, ideal for high-speed and high-temperature machining

Application

Gray cast iron turning Finishing

Case study disc brake

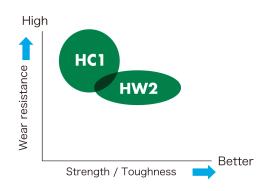
HC1 has twice the amount of tool life compared to other competitors' black ceramics.

Work material	FC250		
Cutting speed	630 m/min	HC1	130 pcs/corner
Feed	0.3 mm/rev		150 pes/comer
Depth of cut	0.5 mm	Competitor's black ceramics	60 pcs/corner
Coolant	DRY		

Gray cast iron continuous finishing | Alumina ceramics

HW2

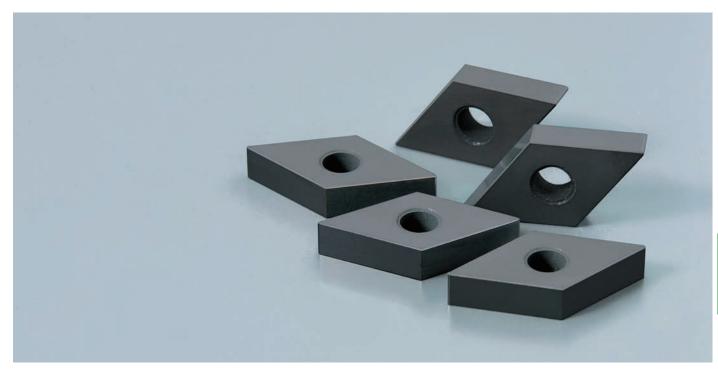
Stable high-speed finish machining is achieved by alumina particles with excellent high-temperature hardness and strength.


High-speed machining at Vc = ~700 m/min

Performance

- High-speed finishing material
- High-strength and high-toughness grade using high-purity alumina with zirconia added.

Application

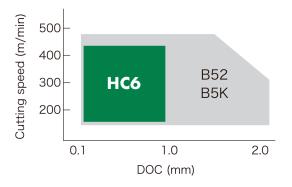

Gray cast iron Finishing light interrupted to continuous turning

Case study Cylinder liner machining

HW2 has twice the amount of tool life than the competitor's grade, as well as a higher quality machined surface.

Work material	cast iron			
Cutting speed	600 m/min	L=132.5	HW2	70 pcs / corner
Feed	0.32 mm/rev			
Depth of cut	3.0mm	φ92	Competitor's ceramic	30 pcs / corner
Coolant	DRY			

Ductile cast iron finishing | TiC based ceramic + alumina


HC6

Ceramic grade specifically designed for ductile iron machining

Ideal for high-speed finishing at Vc = ~400 m/min

Performance

- Specially developed ceramic grade for ductile cast iron machining
- The world's first TiC-based ceramic material put into practical use
- Longer tool life and stable machining even under high-speed machining

Case study Differential case machining

HC6 has achieved twice the tool life improvement compared to competitor's CVD coated carbide.

Work material	Ductile cast iron		
Cutting speed	270 m/min	HC6	60 pcs / corner
Feed	0.2 mm/rev		
Depth of cut	0.5 mm	Competitor's CVD coated carbide	30 pcs / corner
Coolant	WET		I

Ductile cast iron Finish turning

C19

Gray Cast iron with scale machining, excellent wear resistance | Silicon nitride ceramic

SX6

Machining gray cast iron at Vc = ~1,200 m/min

Outstanding notch wear resistance and thermal shock resistance

Performance

- Significantly reduces the progress of notch wear, achieving high-speed and longer tool life machining.
- Excellent thermal shock resistance, and can be used for WET machining.

Application

Gray cast iron with scale Turning / Milling

Case study brake disc

SX6 has a 1.5 times longer tool life than other competitors' silicon nitride.

Work material	FC150 with scale			
Cutting speed	1,100 m/min		SX6	75 pcs / corner
Feed	0.5 mm/rev		Competitor's silicon	50 pcs / corner
Depth of cut	2.0~3.0 mm	A DESCRIPTION OF THE OWNER	nitride	So pes / comer
Coolant	WET			

Ductile cast iron / Gray cast iron for roughing with scale to finishing | Coated silicon nitride ceramics

SP9

Excellent chipping resistance and wear resistance due to combination of high toughness material and CVD coating

CVD coating enables longer tool life even in the low-speed range at Vc = 300 m/min.

Performance

- Combination of high-toughness material and CVD coating provides both excellent chipping resistance and wear resistance
- Minimum cutting edge treatment reduces cutting resistance

SP9

SX9

SX6

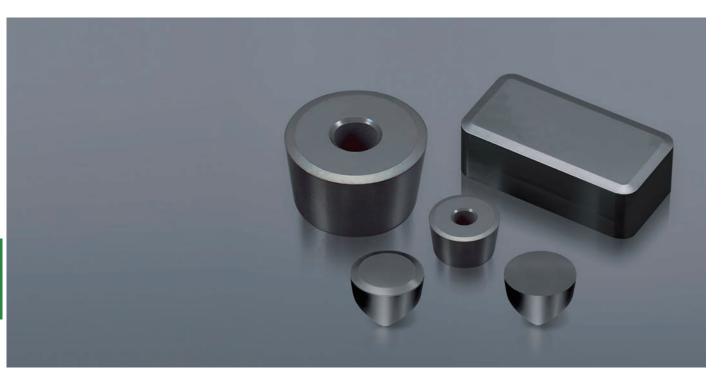
• Finishing is also available.

High

Wear resistance

Application

Ductile cast iron / Gray cast iron Turning / Milling roughing with scale to finishing



Strength / Toughness

SP9 can machine faster than other competitors' CVD coated carbide, and the C/T reduced to 1/2.

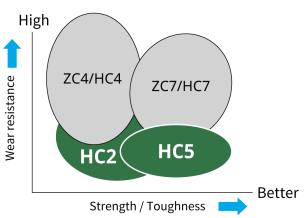
Better

Work material	Ductile cast iron with scale	_		
Cutting speed	450m/min (SP9) 200m/min (CVD coated carbide)		SP9	C/T 30 seconds/month
Feed	0.35 mm/rev		Competitor's	
Depth of cut	1.5mm	CVD-coated carbide		C/T 60 seconds/pc
Coolant	DRY			

For continuous machining of gray cast iron and hardened materials | Alumina TiC based ceramics

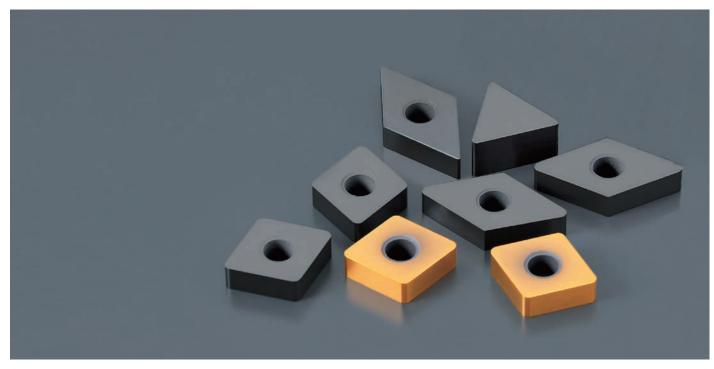
HC2 / HC5

All-purpose grade for machining gray cast iron and hardened materials


Well balanced grade between wear resistance and chipping resistance

Performance

Excellent insert hardness, low plastic deformation at high temperatures, and excellent performance in turning gray cast iron and hardened materials

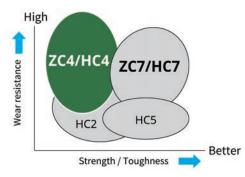

Gray cast iron / Semi to finishing with continuous machining Hardened materials / Finishing Hardened and cast iron mill rolls / Semi to finishing

Case study cylinder liner machining

HC2 achieves 1.3 times higher machining efficiency and nearly three times longer tool life than other competitors' carbide.

Work material	Gray cast iron	_		
Cutting speed	600 m/min (HC2) 400 m/min(competitor's carbide)		HC2	110 pcs/corner
Feed	0.5 mm/rev		Competitor's carbide	40 pcs/corner
Depth of cut	0.7 mm]		
Coolant	DRY	_		

Hardened materials for continuous machining | Alumina TiC based ceramics


ZC4 / HC4

Ceramic grade best for hardened materials

Excellent performance by increasing the hardness and strength of the insert base material. Suitable for hardened materials in the range of HRC 55-70

Performance

- Excellent chipping resistance and wear resistance due to combination of high toughness material and CVD coating
- Significant tool cost reductions are achieved by replacing CBN
- Inserts with a wiper flat or a chipbreaker are available to further improve machining efficiency

Application

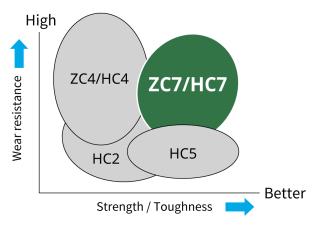
Continuous machining of hardened materials HRC 55-70

Case study Gear machining

HC4 has superior wear resistance and twice the tool life extension compared to competitors' tool.

Work material	Carburized and hardened steel (HRC 63)		
Cutting speed	121 m/min	HC4	60 pcs/corner
Feed	0.03~0.04 mm/rev	Competitor's black ceramics	30 pcs/corner
Depth of cut	0.15 mm		
Coolant	DRY		

Hardened materials for continuous machining | Alumina TiC based ceramics



Suitable for work materials with a wide range of hardness

Reduces insert cost by replacing CBN Suitable for hardened materials with hardness of HRC 30-62

Performance

- Ideal for finishing of hardened materials due to the insert's high temperature hardness and low plastic deformation at high temperatures.
- Reduces tool cost significantly by replacing CBN.
- Inserts with a wiper and chipbreaker types are also available.

Application

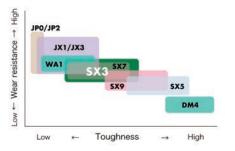
Continuous machining of hardened materials HRC 30-62

Case study Tool parts machining

ZC7 can machine the same number of pieces as CBN and has a stable tool life. Significant cost reductions are now achieved.

Work material	SCr42H		
Cutting speed	120 m/min	ZC7	50pcs stable machining
Feed	0.15 mm/rev		P
Depth of cut	0.4 mm	Competitor CBN	50pcs unstable tool life
Coolant	WET		

Heat-resistant alloys for scale to semi-finishing | SiAlON ceramics


SX3

Covers wide range of machining:Roughing with scale to semi-finishing

Ceramic grade combining toughness and wear resistance High speed and stable machining in turning and milling

Performance

- Excellent wear and chipping resistance. Versatile ceramic grade.
- Covers a wide range of heat-resistant alloy machining from scale to semi-finishing
- High-efficiency machining in milling and turning

Application

Turning / Profiling / Milling Roughing with scale to semi-finishing

Heat-resistant alloys

Case study Rene130 with scale machining

In scale machining, SX3 was in good condition with no defects, whereas the competitor's SiAlON resulted in defects.

Work material	Rene130	Competitor's SIAION ceramic	SX3		
Cutting speed	115 m/min	Competitor's SIAIUN ceramic	583	SX3	10min
Feed	0.15 mm/rev	and and the		Current Tools	10 min chinaina
Depth of cut	-	and the second		(Competitor's SiAION ceramics)	10 min chipping
Coolant	WET	_			

Heat-resistant alloys for scale machining | SiAlON ceramics

SX5 [Made-to-order]

First recommendation for machining through scale Excellent notch wear resistance ideal for machining scale Made-to-order

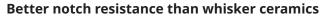
Performance

- Ceramic with the highest fracture resistance
- Best for machining where scale or interruptions exist
- Best grade for roughing Waspaloy with scale

Application

Heat resistant alloys Turning / grooving through scale

Case study Aircraft part (Roughing with scale)


SX5 insert had more stable performance and no edge chipping compared to the competitor's SiAlON grade.

ial	Inconel718		
	200 m/min	SX5	1 pass
	0.2 mm/rev	Current Tools	
	2.5 mm	(Competitor's SiAION ceramics)	1 pass chipping
	WET		

Roughing (no scale) to semi-finishing heat resistant alloys | SiAlON ceramic

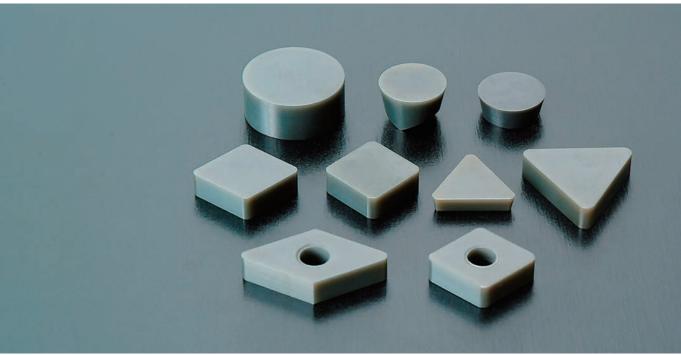
SX7

Improved boundary wear resistance to prevent cutting edge wear and breakage

Performance

- Better notching resistance compared to whisker ceramics No need to program ramping to shift wear on insert
- Better flank wear resistance compared to other SiAlONs.
- Ideal for semi-finishing Inconels and Waspaloy

Application


Roughing with no scale to semi-finishing heat resistant alloys Turning/Grooving/ Milling

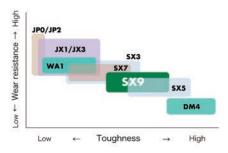
Case study Turbine case (semi-finishing)

SX7 insert achieved more stable machining due to its excellent notching resistance compared to the competitor's whisker insert.

Work material	Waspaloy				
Cutting speed	240 m/min			SX7	7.2min
Feed	0.3 mm/rev		$\bigcirc \circ$	Competitor's whisker	5.3min Broken
Depth of cut	Varied depth of cut	<i>φ</i> 39" ►		competitor s whister	J.Smir bloken
Coolant	WET				

Machines through scale on heat resistant alloys | SiAlON ceramic

SX9



SiAlON ceramic grade material with improved chipping resistance

Best grade for roughing heat resistant alloys like Inconel 718 with scale

Performance

- SiAlON with excellent notch and flank wear resistance
- Superior toughness compared to whisker ceramics
- Best thermal shock resistance, perfect for milling applications
- Best grade for roughing Inconel with scale

Application

Heat resistant alloys Turning / Milling / End milling: roughing operations

Case study Aircraft part (with scale)

SX9 is a significant cost advantage and double the tool life compared to competitor's whisker insert.

Work material	Inconel718		
Cutting speed	180 m/min	SX9	2 pcs/corner
Feed	0.2 mm/rev	Competitor's Whisker ceramics	1 pcs/corner
Depth of cut	- 0.6 mm	competitor s whister ceranics	
Coolant	WET		

Roughing (no scale) to semi-finishing heat resistant alloys | Whisker ceramic

WA1 / WA5

High speed and efficient machining of heat resistant alloys

SiC fibers in the material provide strength, flank wear resistance and thermal shock resistance

Performance

- Alumina ceramic material with enhanced toughness due to the addition of SiC whiskers
- High-speed machining is possible due to flank and notch wear resistance and toughness

Application

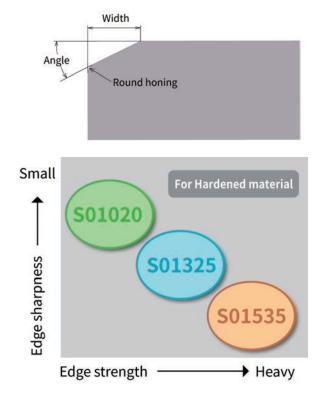
Roughing (no scale) to semi-finishing heat resistant alloys Turning/Grooving/Milling

Case study Gas turbine case

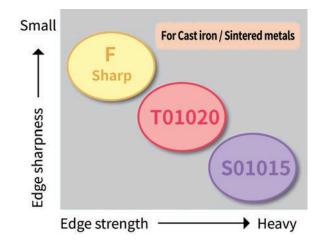
WA1 significantly reduced cycle time compared to the competitor's carbide end mill.

Work material	Inconel718	0		
Cutting speed	800 m/min	B	WA1	1 pass = 2 minutes
Feed	0.10 mm/rev	à	Competitor's Whisker ceramics	1 pass = 60 minutes
Depth of cut	2 mm			
Coolant	DRY			

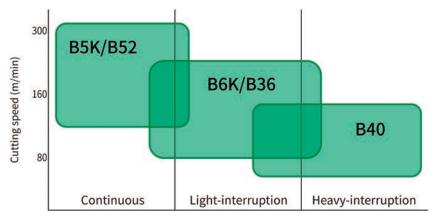
CBN/Ultra-high pressure sintered body

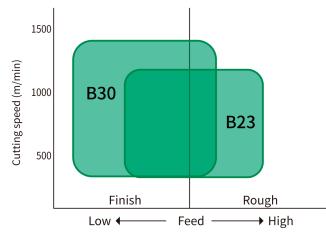

Selection Guide

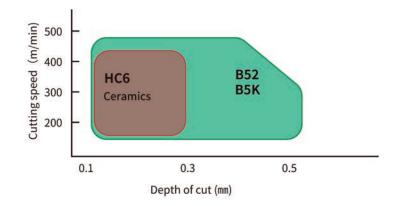
Features

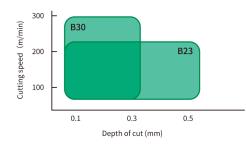

CBN grade inserts are composed mainly of CBN (Cubic Boron Nitride) particles with a special ceramic binder. The material has excellent cutting material properties including high hardness at normal and highly elevated temperatures, as well as little chemical reactions with work materials. CBN inserts can be used for machining hardened materials and high speed machining of cast iron.

Work material	Grade	Coating	Corner	Application	CBN content	Main binder
	B36	-	multi	Light to heavy interrupted machining of hardened materials	65%	TiCN
	B40	-	multi	Heavy interrupted machining of hardened materials	65%	TiN
H Hardened material	B52	-	multi	Finishing of ductile iron Continuous machining of hardened materials	50%	TiC
	В5К	TiCN	multi	Continuous to light interrupted machining of hardened materials Finishing of ductile iron	50%	TiC
	B6K	TiCN	multi	Middle to heavy interrupted machining of hardened materials	65%	TiCN
K Cast iron	B16	-	solid	Roughing to finishing of gray cast iron Machining of sintered metals	82%	TiN
	B22	-	top-surface	Turning of hardened mill rolls Roughing to finishing of gray cast iron	80%	TiN
	B23	-	multi	Roughing of gray cast iron Machining of sintered metals	90%	Ti
	B30	-	multi	Finishing of gray cast iron Machining of sintered metals	95%	Ti


Edge treatment


Code	Width	Angle	R-honing
F(sharp-edge)	0.00	0°	none
T01020	0.10	20°	none
S01015	0.10	15°	yes
S01020	0.10	20°	yes
S01325	0.13	25°	yes
S01535	0.15	35°	yes


Hardened material


Gray cast iron

Ductile cast iron

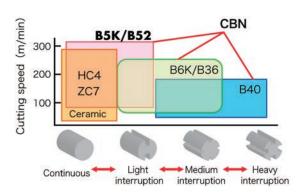
Sintered metals

For continuous machining | CBN for hardened materials

B5K / B52

CBN grades ideal for high-precision machining

Roughing to finishing continuous cut operations Ideal for hardened materials of HRC 60 or higher


Performance

- Excellent wear resistance due to optimum CBN content and special TiC binders
- Continuous machining

Application

Continuous machining for hardened materials at HRC60 or higher

Case study OD Turning of shaft parts

B5K achieved 2 times longer tool life.

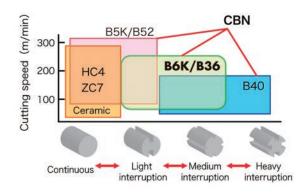
Due to dimensional changes and deterioration of the machined surface the competitor's coated CBN needed to be changed.

Work material	SUS440C(HRC58-60)		
Cutting speed	150m/min	B5K	6 pcs/corner
Feed	0.1mm/rev	 Compatibule costs of CDN	2
Depth of cut	0.2mm	Competitor's coated CBN	3 pcs/corner
Coolant	DRY		

For light to medium interrupted machining | CBN for hardened materials

B6K / B36

Recommended for continuous to interrupted cuts


Versatile CBN designed for machining hardened materials at HRC 60 or above with light to medium interruptions

Performance

- CBN with a special TiCN binder achieves a combination of wear resistance and fracture resistance
- Stable performance through light to medium interrupted machining

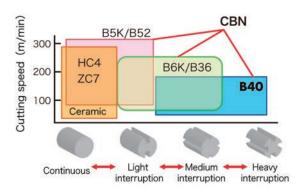
Application

Light to medium interrupted machining of hardened materials of HRC 60 or higher

Case study Interrupted OD turning of machine parts

Work material	STKM(HRC50) interrupted			
Cutting speed	210-220m/min	Φ64	В6К	700 pcs/corner
Feed	0.08 mm/rev	404	Conventional tool	400 pcs/corner
Depth of cut	0.2 mm	★ 3.5	Conventional tool	400 pcs/comer
Coolant	WET			

For heavy interrupted machining | CBN for hardened materials


B40

CBN material specialized for heavy intermittent machining

Excellent chipping resistance and stable machining Best suited for machining of hardened materials over HRC60

Performance

- CBN with a special TiN binder enhances chipping resistance
- CBN material specialized for heavy interrupted machining

Application

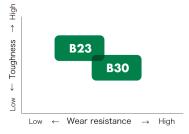
Hardened materials interrupted machining HRC60 or more

Case study gear parts

Although insert damage due to interrupted machining have been a problem, B40, with its superior resistance to wear, achieved a 4X longer tool life.

Work material	S50C(HRC61)			
Cutting speed	28 m/min		B40	400 pcs/corner
Feed	0.12 mm/rev		510	
Depth of cut	0.25 mm	E	Competitor CBN	100 pcs/corner
Coolant	WET	and the second second		

High-speed machining of cast iron and sintered alloys | Non-coated CBN



High-speed machining at Vc=~1,200m/min

Highly efficient machining that significantly outperforms ceramics

Performance

- Specialized in high-speed roughing of gray cast iron
- Ultra high-speed machining at a maximum Vc-1,200m/min

Application

Gray cast iron Turning scale machining to semi-finishing

Case study Oil pump housing

Work material	FC250		
Cutting speed	250 m/min	 	010
	0.2 mm/rev	B23	210 pcs / corner
Feed	0.2 1111/160	Competitor's CBN	70 pcs / corner
Depth of cut	2.0 mm	competitor s con	
Coolant	WET		

Gray cast iron for high-speed roughing | Solid type CBN

B16

Ideal for high-efficiency machining of cast iron

Solid CBN does not have the depth of cut limitations of brazed CBN, making it ideal for machining with large depths of cut.

Performance

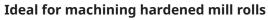
- Succeeded in developing CBN tool materials with a wide range of application areas other than hardened steel by increasing CBN content and using a binder with high bonding strength
- Solid CBN with multi-corner specifications
- Coating makes it easy to identify the corner to be used

B23 2000 **B30** Cutting speed (m/min) 1500 **B16** 1000 Ceramic 500 (FCD) B52 1.0 3.0 4.0 2.0 Depth of cut (mm)

Application

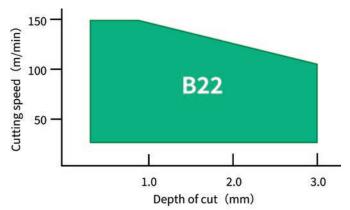
High-speed roughing to finishing of gray cast iron Machining sintered metal

Case study Roughing for disc brake


B16 has a longer tool life of approximately 1.2 times that of competitors' products.

Work material	FC250			
Cutting speed	1000 m/min		B16	800 pcs/corner
Feed	0.7 mm/rev			
Depth of cut	1.0 mm	U	Competitor CBN	650 pcs/corner
Coolant	WET			

For hardened mill rolls turning | Top-surface CBN

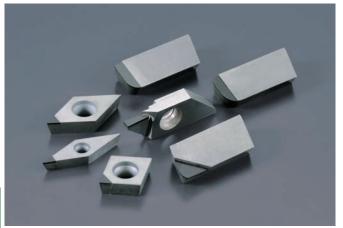

B22

Since the entire top surface is CBN, there is no limit to the depth of cut as with brazed CBN, making it ideal for machining with a large depth of cut.

Performance

- Multi-corner design with top-surface CBN
- High strength with special binder

Application

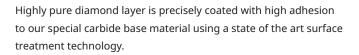

Turning of hardened mill rolls High-speed roughing to finishing of gray cast iron

Case study Mill rolls

B22 has twice the amount of tool life than other competitors' CBNs.

Work material	High Chromium Cast Iron	2500m		
Cutting speed	60 m/min	0450	B22	2 passes
Feed	0.2 mm/rev		Competitor CBN	1 pass
Depth of cut	2.0 mm			
Coolant	WET			

PCD / Diamond sintered grade

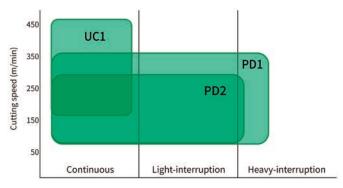


Diamond Coating

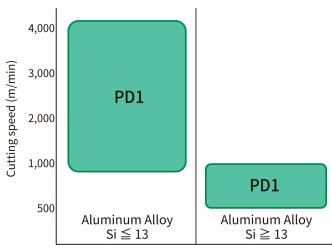
Diamond has low affinity with non-ferrous materials, providing excellent adhesion resistance, a high hardness, and wear resistance, but when used as a cutting tool, it has low strength, which causes a problem with its chipping resistance.

PCD is a material that solves the strength problem without losing the original characteristics of the diamond by sintering the diamond in a fine-grained, polycrystalline state.

Compared to carbide tools used in nonferrous metal machining, PCD enables high-speed machining.



Superior wear resistance compared to conventional PCD tools, especially in difficult-to-machine materials such as carbon and ceramic materials.


Features

Work material	Grade	Component	Ave. particle size(µm)	Application
	PD1	Diamond sintered	10	Machining of non-ferrous metals such as aluminum, brass, resin, copper, carbon, ceramics, etc. Superior adhesion resistance enables high-speed machining compared to carbide
Non-ferrous material	PD2 Diamond sintered 1		1	Nonferrous metal machining such as aluminum, brass, resin, copper, carbon, ceramics, etc. Improved sharpness and chipping resistance by ultrafine particle size of carbide base material
	UC1	Diamond Coating	0.1	Nonferrous metal machining such as aluminum, brass, resin, copper, carbon, ceramics, etc. Wear resistance is improved compared to PCD tools by coating a high-purity diamond layer.

Aluminum alloy/brass machining (turning)

Aluminum alloy (Milling)

C39

Non-ferrous material machining | PCD grades

PD1 / PD2

Faster speed capabilities compared to carbide inserts

Optimum machining efficiency for non-ferrous materials PCD demonstrates excellent durability with sharp cutting edge and increased chipping resistance

PCD demonstrates excellent durability with sharp cutting edge and increased chipping resistance

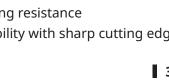
Performance

- The hardest fine grain diamond inserts.
- Achieves outstanding edge sharpness and high-speed machining compared to carbide
- The characteristics of diamonds prevent the formation of a built up edge, enabling high-precision and stable machining.

3D molded chipbreaker

Curl & control small chips, and provide high cutting performance. Suitable for finish machining area (ap=0.5mm)

Performance



Case study Spool parts

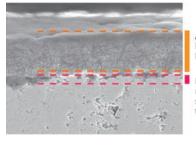
Work material	A6061			
Cutting speed	170m/min	0	PD2	10,000 pcs/corner
Feed	0.06mm/rev	Ø8		
Depth of cut	0.15mm	*- 70	Competitor's PCD inserts	5000 pcs /corner
Coolant	WET			

For nonferrous metals and non-metallic machining | Diamond coating

UC1

Ideal for machining difficult-to-machine materials such as carbon and ceramic raw materials

Coated with a high-purity, high-hardness diamond layer with excellent wear resistance Longer life in difficult-to-machine materials compared to conventional PCD tools and DLC

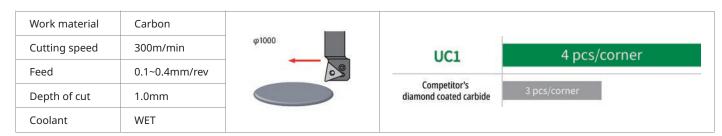

Performance

The dense coating of high-purity, high-hardness diamond layers provides superior wear resistance compared to conventional PCD tools, and can be used for carbon cutting and machining of raw ceramic materials, contributing to cost reduction.

	DLC	PCD	UC1
Binder	none	Co, Ni	none
Diamond grain size	Amorphous	10µm	<0.1µm
Diamond surface roughness	0.25	0.25	25
Hardness(GPa)	10	75	90

Good coating adherence

NTK's carbide base material and state of the art surface treatment ensures good coating adherence to reduce flaking which provides stable cutting and long tool life



A smooth diamond layer provides a beautiful finish

Excellent peeling resistance due to special interface treatment

Case study carbon plate

UC1 has a 1.3 times longer tool life than the competitor's diamond coatings.

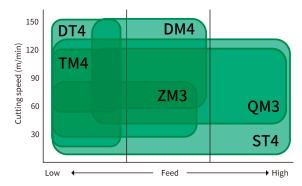
Micro-grain Carbide and PVD/CVD-coated Carbide

Features

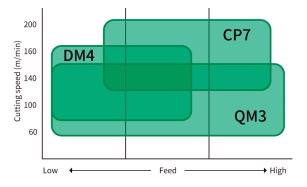
Excellence in precision machining and machining of hard-to-cut materials

These material grades use WC micro-grain carbide, the hard base material which is granulated to a micro size 1µm as the substrate. Furthermore, the substrate is coated using a PVD method with TiN, TiCN, and/ or TiAlN. The resulting materials are suitable for machining difficult-to-cut materials and demanding high precision small part applications. Inserts in these grades are tougher and harder than carbide and come with ultra sharp cutting edges. This selection of micro-grain carbide grades exhibit excellent wear resistance and thermal crack resistance.

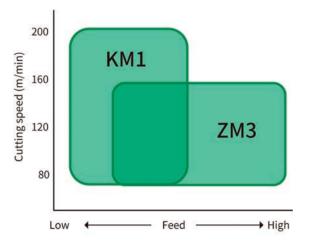
						Physical properties*					
Work material	Grade		Coating		Application	Density g/cm³	Hardness HRA	Bending strength Mpa	modulus	Thermal expansion coefficient ×10 ⁻⁶ /K	Thermal conductivity W/m.K
	ST4		thick PVD	CrAIN	Best grade for 304 SS	14.4	91.0	3000	580	5.8	63
	DT4		thin PVD	TIAIN	Excellent oxidation resistance for Swiss-type lathes	14.4	91.0	3000	580	5.8	63
Stainless steel	TM4		thin PVD	TiN-TiCN	Best combination of wear resistance, toughness and adhesion resistance for Swiss- type lathes	14.4	91.0	3000	580	5.8	63
	ZM3		thick PVD	TiN	Best adhesion resistance enables high accuracy machining	14.4	91.0	3000	580	5.8	63
	DM4		thick PVD	TiAIN	Best oxidation resistance enables high temperature machining	14.4	91.0	3000	580	5.8	63
	QM3		thick PVD	TiCN	Best wear resistance enables stable machining	14.4	91.0	3000	580	5.8	63
Ρ	VM1		thin PVD	TiCN	Best edge sharpness and good wear resistance	14.8	92.0	2500	640	5.7	84
Steel	CP7		thick CVD	Al ₂ O ₃ -TiCN	Roughing to semi-finishing of steel	13.8	90.1	2200	580	-	-
K Cast iron	CP1		thick CVD	Al ₂ O ₃ -TiCN	For cast iron and ductile cast iron	14.9	92.0	2400	640	-	-
Non-ferrous material	KM1		uncoated	-	Best for non-ferrous material with a polished mirror finish surface	14.8	92.0	2500	640	5.7	84
M P N Seeter Seet	AC3		thin PVD	TiAlN- TiAlCrN	Developed for solid carbide endmills	14.2	91.0	3000	560	6.1	49

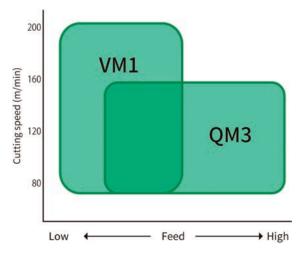

*The values of the base material are indicated.

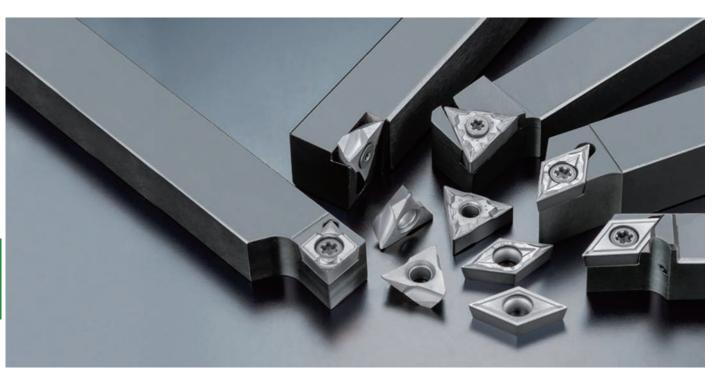
Coating specifications


	ST4	QM3	DM4	DT4	TM4	VM1	ZM3
Thickness	Thick	Thick	Thick	Thin	Thin	Thin	Thick
Wear resistance	0	0	0	0	0	0	
Heat resistance	0		0	0			0
Adhesion Resistance	0				0		0
Edge Sharpness				0	0	0	
Composition	CrAIN	TiCN	TiAIN	TiAIN	TiN-TiCN	TiCN	TiN

⊚1st choice ⊖2nd choice


Stainless steel


Carbon and alloy steel



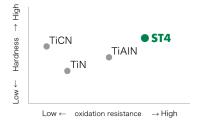
Aluminum and brass

Free-cutting steel

Ideal for stainless steel machining | PVD coated carbide

ST4

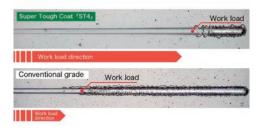
Stable and consistent performance machining tough materials like 304 SS


Solution for stainless steel machining issues like reduced tool life, inconsistency of part dimensions, and poor chip control.

Performance

Unique coating with a high aluminum composition dramatically improves hardness and oxidation resistance.

Extended tool life is achieved by suppressing wear from increased cutting temperatures.


Coating wear and oxidation chart

Coating layer adhesion strength

Significantly improved insert surface smoothness and coating adhesion.

Prevents adhesion to the cutting edge, which tends to occur in stainless steel machining, leading to stabilization of dimensional accuracy and machined surfaces.

Case study

ST4 has approximately 1.7 times longer tool life than competitor's tools.

Work material	SUS316L	(Day)		
Cutting speed	60m/min	4		
Feed	End face 0.01mm/rev		ST4	6,000 pcs/corner
	External 0.03mm/rev		Conventional tool (PVD coated carbide)	3500 pcs/corner
Depth of cut	0.3 - 2.0mm		(i to couled carbide)	
Coolant	WET			

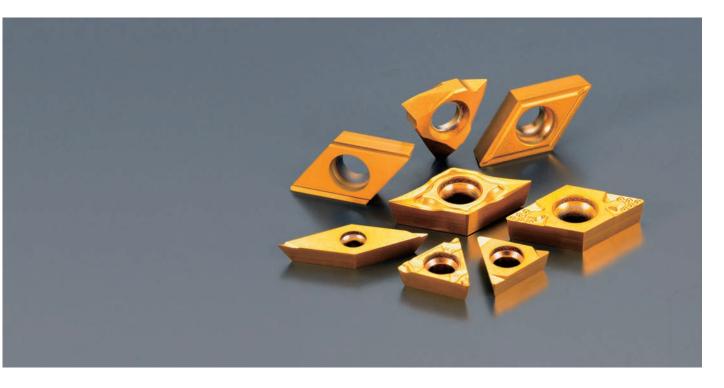
General-purpose machining with excellent adhesion resistance | PVD coated carbide

ZM3

Excellent adhesion resistance and dimensional stability, ideal for high-precision machining of smalldiameter workpieces

Achieves stable machining with its resistance to built up edge

Performance


- Stable machining dimensions due to high adhesion of the coating
- Smooth TiN coating provides outstanding adhesion resistance

Case study

ZM3 offers outstanding adhesion resistance and dimensional stability with a tool life that is 40 times longer than that of competitor's tools.

Work material	S10C		
Cutting speed	100m/min	ZM3	6000 pcs/corner or more
Feed	0.12mm/rev	Competitor's	150
Depth of cut	0.3~0.4mm	PVD-coated carbide	150 pcs/corner
Coolant	WET		

General purpose machining with excellent wear resistance | PVD coated carbide

TM4

Versatile grade material for all types of work materials

Easy-to-use grade with excellent sharpness and adhesion resistance

Performance

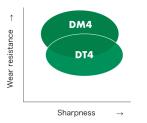
- Excellent workpiece dimensional stability and tool life due to multilayer coating
- A smooth hard coating with excellent adhesion resistance

Case study automotive parts

TM4 achieved 1.9 times longer tool life than the competitor's product. Its superior wear resistance ensured long stable machining.

Work material	SUS304			
Cutting speed	80m/min	¢910	TM4	950 pcs/corner
Feed	0.02mm/rev		Competitor's PVD-coated carbide	
Depth of cut	-1.2mm	, p	PVD-coated carbide	500 pcs/corner
Coolant	WET			

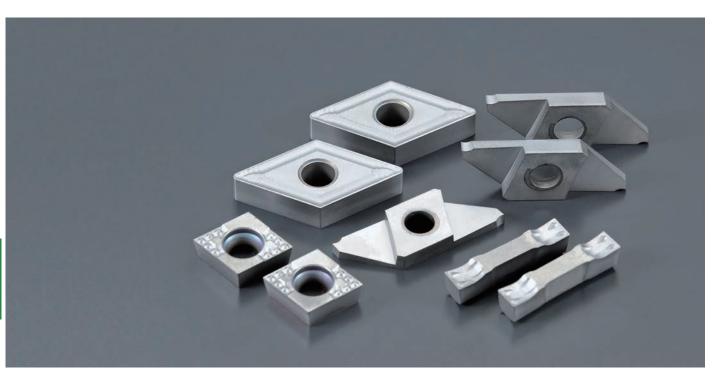
Machining difficult-to-cut materials | PVD-coated carbide


DT4 / DM4

Ideal for machining difficult-to-cut materials such as titanium and heat-resistant alloys

Stable machining even under conditions where cutting heat tends to concentrate on the cutting edge

Performance


- Thick TiAIN coating reduces cutting tool damage due to machining heat.
- DT4 has a thin coating layer. A sharp cutting edge ideal for machining small diameter parts.
- DM4 has a thick coating layer. A combination of heat resistance and wear resistance makes it ideal for high load machining such as parting and grooving.

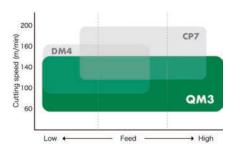
Case study medical screw

DM4 achieved approximately 1.6 times longer tool life than the competitor's product.

Work material	Titanium alloy		
Cutting speed	60m/min	 DT4	400 pcs/corner
Feed	0.02mm/rev	Competitor's	252
Depth of cut	0.5mm	PVD-coated carbide	250 pcs/corner
Coolant	WET		

Carbon and alloy steel machining | PVD coated carbide

QM3


Longer tool life and stable machining of carbon and alloy steels such as S45C and SCM materials

Excellent wear resistance ensures stable machining and extended tool life

Performance

- Combination of tough carbide material and TiCN coating provides excellent chipping resistance.
- Excellent wear resistance, especially in the low speed range.
- Stable machining even in heavy interruptions.

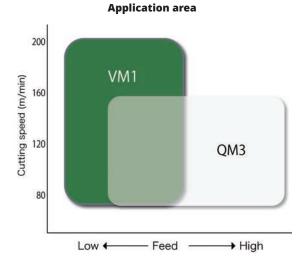
Application area

Case study

The combination of QM3 and Z5 chipbreaker extends the tool life by more than 2.5 times, while the competitor's tool experienced unstable tool life.

naterial	S50C			
ng speed	156m/min		QM3	120 pcs/corner
1	0.33mm/rev		45 (1755 (20.)	
:	1.5mm		Competitor's PVD-coated carbide	45 pcs/corner
	WET	T T		

Free-cutting steel machining | PVD-coated carbide


VM1

Ideal for machining free-cutting steel (SUM)

Long-tool life machining is achieved by reducing the built up edge on the cutting edge.

Performance

- Thin-layer TiCN coating provides both outstanding sharpness and wear resistance.
- Achieves long tool life and high-precision machining even at high speeds.

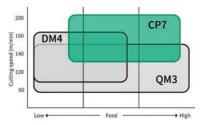
Case study

VM1 is stable in both dimensions and surface finish and has 5 times longer tool life than the competitor's product.

Work material	SUM24L			
Cutting speed	140m/min	D	VM1	800~1,000 pcs/corner
Feed	0.015mm/rev		10000000000000000000000000000000000000	
Depth of cut	0.1mm		Competitor's PVD-coated carbide	150 pcs/corner
Coolant	WET			

High-speed machining of carbon and alloy steel | CVD coated carbide

CP7


Ideal for high-speed machining of alloy steel and carbon steel

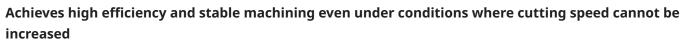
CVD multilayer coating for outstanding performance machining steel

Performance

The CVD multi-layer coating and high strength base material provides excellent wear resistance and toughness that can be used in a wide range of applications.

Application area

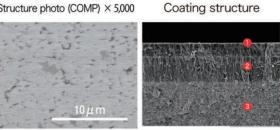
Case study


Achieves approximately 3 times the tool life of the competitor's coated carbide. Wide range of applications are possible.

Work material	SUJ2			
Cutting speed	90m/min	•	CP7	10,000 pcs / corner
Feed	0.15mm/rev	*		
Depth of cut	0.5mm		Competitor's PVD-coated carbide	3,500 pcs / corner
Coolant	WET			

Grey cast iron and ductile cast iron with scale machining | CVD coated carbide

CP1

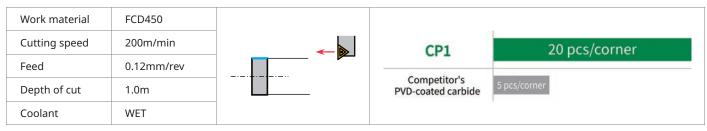


Outstanding wear resistance at Vc=~300m/min

Performance

- Specializing in scale machining of grey and ductile cast iron.
- Excellent wear resistance and stable machining are achieved with a thick TiCN layer and an Al2O3 layer in the coating.
- Unique rake face surface smoothing process provides superior performance in adhesion resistance.

Structure photo (COMP) × 5,000




Equivalent to HRA 91.3 Young's modulus: 640GPa

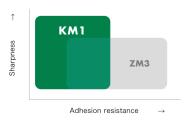
- ① A very smooth layer of fine grain Al2O3
- ^② Fine column shaped grain TiCN layer
- ③ Ultra hard carbide base material

Case study

CP1 achieves higher machining efficiency than competitor's tools.

Nonferrous metal machining, cost effective | Uncoated carbide

KM1


Ideal for machining non-ferrous metals such as aluminum, brass, and resin

Excellent machined surfaces are achieved by reducing the occurrence of built up edge Outstanding sharpness solves the problem of a rough machined surface

Performance

- Uncoated fine-grained carbide with excellent sharpness.
- Mirror polished surface reduces built up edge.
- Stable machining dimensions and excellent surface finishes.

KM1 comparison chart

Up sharp edges and mirror finish

Case study

The competitor's product machined 3 roughing passes and a finishing pass. The chips often scratched the workpiece. The cycle time was more than 3 minutes.

The KM1 machined in a single pass, reducing the cycle time to 1 minute and 50 seconds.

Work material	A5056			
Cutting speed	90~170m/min	-	KM1	More than 300
Feed	0.04mm/rev			
Depth of cut	0.5~5.0mm		Competitor's PVD-coated carbide	200 pcs
Coolant	WET			

End mill tools | PVD coated carbide

AC3

Ideal for end milling of small-diameter workpieces that are prone to chattering, or applications that have problems with burrs forming

Performance

- TiAlN-TiAlCrN coated + fine grain carbide
- Grade with both excellent sharpness and wear resistance required for end milling on CNC type automatic lathes

Case study

The current tool created a cloudy machined surface when it reached the end of its tool life. The S-Mill achieved good surface finish and an extended tool life.

Work material	SUS416F			
Cutting speed	3,200rev/min		C 1/1/1	12,000 peo/server / a
Feed	140mm/min		S-MILL	12,000 pcs./corner + α
Depth of cut	0.6mm	0.6mm	Competitor's solid end mills	10,000 pcs/corner
Coolant	WET			

Chipbreaker for turning

OD turning positive inserts

		Name	Chipbr	eaker geometry	Features	Chip control range
		TMV	A	15*	 Chipbreaker for Vibration Cutting Reliably long tool life and stable chip evacuation during vibration cutting 	(g) 5.0 10 0.5 10 0.5 10 0.3 0.1 0.2 0.1 0.2 0.4 Feed rate (mm/rev)
Tool Materials/ Selection Guide C		AMX		* DCGT11T302MAMX shown	• Designed for very light depth of cut	E 5.0 3.0 5 0.5 5 0.3 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)
	Finishing	KHG		*DCET11T302 shown	 Excellent chip control on finishing cuts For super high-precision machining Precision tolerance in corner radius: ±0.01 	() 5.0 3.0 5 0.5 5
		AZ7		0.4 DCGT11T302MFN shown	• Excellent chip control at light feed and light depth of cut	() 5.0 10 10 0.5 10 0.5 10 0.5 0.1 0.2 0.4 Feed (m/rev)
		AT	-	*DCGT11T302 shown	 Excellent adhesion resistance with dimensional stability Best for small diameter parts and for machining low carbon steels 	E 5.0 3.0 10 0.5 10 0.5 10 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 100
		A1	C	0.15 0.8 14 °	• Tough cutting edge and good chip control	(m 5.0 3.0 10 10 10 10 10
		A		0.15 1.0 1.0 1.0 14° * * * CPGH080202 shown	• General-purpose ID chipbreaker	1.0 10 10 10 10 10 10 10 10 10 1
	For light cut	UHG		*DCET11T3008R shown	 Excellent chip control on finishing cuts Precision tolerance in corner radius: ±0.01 	E 5.0 3.0 10 10 50 0.5 50 0.5 50 0.5 50 0.5 10 0.5 50 0.5 Feed mm/rev)
		U U1		R *DCGT11T302 shown	• Sharp cutting edge prevents materials from work hardening [chipbreaker width] U →1.1mm U1→1.6mm	E 5.0 3.0 5 0.5 5 0.3 0.1 0.05 0.1 0.2 0.4 Feed mm/rev)
		YL		2.7 0.3 1.0 1.0 1.0 14° 14° X DCGT11T302MYL shown	 Great combination of sharpness and toughness Excellent chip control 	E 5.0 3.0 5 0.5 5 0.1 0.1 0.5 6 0.1 0.2 0.4 Feed (mn/rev)

OD turning positive inserts

	Name	Chipbreaker geometry	Features	Chip control range
	AM3	*DCGT11T302 shown	• All purpose chipbreaker • Sharp edge with toughness	() 5.0 3.0 5 0.0 5 0.0 6 0.1 6 0.1 7 0.2 7 0
	S	*DCGT11T302 shown		(u) 5.0 3.0 1.0 0.0 3.0 1.0 0.0 3.0 1.0 0.0 4 0.0 0.0 4 1.0 0 0.0 1.0 0 0.0 1.0 0 0 0 0 0 0 0 0
For Middle Cut	SX			5 0.3 0.1 0.05 0.1 0.2 0.4 Feed mm/rev)
	AZ8	2.2 18° *DCMT11T302 shown	• Superior cutting quality and versatile breaker with CVD coating	() 5.0 3.0 5 0.5 5 0
	CL	4.8 4.8 17° *DCGT11T302M shown	 Sharpest molded chipbreaker Excellent chip control Less tool pressure 	() 5.0 10 10 0.5 0.3 0.1 0.05 0.1 0.2 0.4 Feed mn/rev)
For non- ferrous	V P H	Top side Flank side	 Very up-sharp edge with mirror finish V: Mirror finish on Top and Flank side with R0 nose radius P: Mirror finish on Top and Flank side H: Mirror finish on Top side 	_

OD turning negative inserts

		Name	Chipbr	eaker geometry	Features	Chip control range	
		DA		2.5 15° *TNGG160401F shown	• Excellent chip control and sharp cutting edge	E 5.0 3.0 5 0.5 5 0.3 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.2 0.4 Feed (nm/rev)	
Tool Materials/ Selection Guide C	Finishing	D1	C	*TNEG160402F shown	• Excellent chip control and sharp cutting edge	E 5.0 5 1.0 5 0.5 5 0.3 0 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)	
rials/ Guide		AG		45°	• Resolve chip entanglement, which is likely to occur during machining of low-hardness layer	(i) 5.0 5.0 5.1.0 5.5 6.0.3 0.1 0.05 0.1 0.2 0.4 Feed rate (mm/rev)	
	For light cut	UL		4.0 20° *TNGG160401MFN shown	 Negative insert with a positive insert's chipbreaker Reduced burr Improved microfinish Superb advantage in cost per corner over positive inserts 	E 5.0 3.0 5.0 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 F.0 F.0 F.0 F.0 F.0 F.0 F.0 F.0	
		U2		×TNGG160402F shown	• Reduced burr and work hardening due to high rake design	E 5.0 3.0 5 1.0 5 0.5 5 0.3 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)	
	For Middle Cut	ZP		*CNMG120408 shown	 Double-positive rake and sharp cutting edge Low tool pressure even at heavy depth of cut 	E 5.0 5 0.0 5 0.0 5 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)	
		С		0.2 2.2 14° ************************************	• General-purpose chipbreaker with excellent toughness and chip control	10 5.0 10 1.0 10 0.5 10 0.1 0.05 0.1 0.05 0.1 FeedD (mm/rev)	
		Z5		*CNMG120408ENB shown	 Very tough insert Designed for machining with heavy interruption 	Image: Solution of the	
	For Rough Cut	AM1		0.2 *VNMG160404 shown	• Tough chipbreaker for roughing with exceptional stability	(1) 5.0 1.0 5 0.5 5 0.3 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)	
		G		0.2 **CNMG120408 shown	• Tough chipbreaker for roughing with exceptional stability	E 5.0 3.0 10 0.5 50 0.5 50 0.3 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)	

ID turning positive inserts

	Name	Chipbr	reaker geometry	Features	Chip control range
	A2	C	0.8 20° %ERGHT30102F shown	 Control chips at light feed and light depth of cut Sharp cutting edge due to large rake angle 	(i) 5.0 5.0 5 1.0 5 0.5 5 0.3 0.3 0.3 0.3 0.5 0.1 0.5 0.4 Feed (ms/rev)
	B1	C	0.15 0.6 10° * TCGH060102FV shown	• Stable cutting thanks to sharp and tough cutting edge	E 5.0 3.0 5 0.5 5 0.5 5 0.3 8 0.1 0.05 0.1 0.2 0.4 Feed (ma)/rev)
	К		1.0 15° *TPGH090202FL shown	 Superb chip control on finishing applications Sharp cutting edge with the high rake angle 	(1) 5.0 10 10 10 10 10 10 10 10 10 1
	KHG		*DCET11T302 shown	 For super high-precision machining Precision tolerance in corner radius: ±0.01 	E 5.0 3.0 5 0.5 5 0.5 5 0.5 6 0.1 0.05 0.1 0.2 0.4 Feed mm/rev)
Finishing	FG		1.5 17* *TPGH110304 shown	 Evacuates chips BACKWARD at light depth of cut Sharp cutting edge with high rake angle Image: Chip backward 	E 5.0 3.0 5 0.5 E 0.3 6 0.1.0.05 0.1 0.2 0.4 Feed (mm/rev)
	F05		*TPGH060102F shown	• Evacuates chips BACKWARD • Excellent choice for blind hole machining	E 5.0 3.0 50 0.5 50
	F1		* 1.8	 Evacuates chips BACKWARD Excellent choice for blind hole machining Image: Chip backward 	E 5.0 3.0 55 50 56 0.3 80 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)
	AZ7	and the	0.4 DCGT11T302MFN shown	• Excellent chip control at light feed and light depth of cut	Image: Constraint of the state of

C Tool Materials/ Selection Guide

ID turning positive inserts

	Name	Chipbreaker geometry		Features	Chip control range	
	A1	C	0.15 0.8 14 ° *CPGH040102 shown	 Tough cutting edge and good chip control General-purpose ID chipbreaker 	10 10 10 10 10 10 10 10 10 10	
	A	C	0.15 1.0 1.0 1.4* ** ** CPGH080202 shown	 Tough cutting edge and good chip control General-purpose ID chipbreaker 	(1) 5.0 1.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	
Tool Materials/ Selection Guide	B2	R	0.15 1.0 10° 10° * TPGH090202FV shown	• Stable cutting thanks to sharp and tough cutting edge	10 50 50 50 50 50 50 50 50 50 5	
For light cut	B3		*TPGH090202F shown	• Stable cutting thanks to sharp and tough cutting edge	50 30 50 50 50 50 50 50 50 50 50 5	
	U U1		R * DCGT11T302 shown	 Sharp cutting edge prevents materials from work hardening [chipbreaker width] U →1.1mm U1→1.6mm 	€ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	
	AM5		0.9 6* * CPGH060202FN shown	• Provides both good cutting performance and chip control	(E) 5.0 5 1.0 5 0.5 5 0.3 3 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)	
	YL		0.3 10 14° *DCGT11T302MYL shown	 Great combination of sharpness and toughness Covers extremely wide range Excellent chip control 	E 5.0 y 1.0 to 0.5 to 0.3 to 0.1 to 0.1 to 0.1 to 0.1 to 0.1 to 0.1 to 0.2 to 0.4 Feed (mm/rev)	
	AM3		*DCGT11T302 shown	• All purpose chipbreaker • Sharp edge with toughness	E 5.0 3.0 5 0.5 5 0.5 6 0.3 0 0.1 0.05 0.1 0.2 0.4 Feed mm/rev)	
For Middle	S		*DCGT11T302 shown	• Standard ground chipbreaker with wide cutting condition coverage	() 5.0 5.0 1.0 5 0.5 5 0.0 0.5 5 0.0 0.5 5 0.0 0.5 5 0.0 0.5 5 0.0 0.5 Feed mm/rec	
Cut	CL		4.8 17° *DCGT11T302M shown	 Sharpest molded chipbreaker Less tool pressure 	E 5.0 3.0 5 1.0 5 0.5 5 0.1 0.05 0.1 0.2 0.4 Feed mi/rev)	
	AZ8		2.2 8° *DCMT11T302 shown	• CVD coated chip breaker with excellent sharpness and high versatility.	E 50 5 10 5 05 5 03 6 0.1 0.05 0.1 0.2 0.4 Feed (mm/rev)	
For non- ferrous	V P H	Top side Flank side		 Very up-sharp edge with mirror finish V: Mirror finish on Top and Flank side with R0 nose radius P: Mirror finish on Top and Flank side H: Mirror finish on Top side 	-	